§ 29.1357 system, another power source (including its separate feeder) must be provided automatically or be manually selectable to maintain equipment or system operation. (Secs. 313(a), 601, 603, 604, and 605 of the Federal Aviation Act of 1958 (49 U.S.C. 1354(a), 1421, 1423, 1424, and 1425); and sec. 6(c), Dept. of Transportation Act (49 U.S.C. 1655(c))) [Doc. No. 5084, 29 FR 16150, Dec. 3, 1964, as amended by Amdt. 29–14, 42 FR 36973, July 18, 1977; Amdt. 29–24, 49 FR 44439, Nov. 6, 1984] ## § 29.1357 Circuit protective devices. - (a) Automatic protective devices must be used to minimize distress to the electrical system and hazard to the rotorcraft system and hazard to the rotorcraft in the event of wiring faults or serious malfunction of the system or connected equipment. - (b) The protective and control devices in the generating system must be designed to de-energize and disconnect faulty power sources and power transmission equipment from their associated buses with sufficient rapidity to provide protection from hazardous overvoltage and other malfunctioning. - (c) Each resettable circuit protective device must be designed so that, when an overload or circuit fault exists, it will open the circuit regardless of the position of the operating control. - (d) If the ability to reset a circuit breaker or replace a fuse is essential to safety in flight, that circuit breaker or fuse must be located and identified so that it can be readily reset or replaced in flight. - (e) Each essential load must have individual circuit protection. However, individual protection for each circuit in an essential load system (such as each position light circuit in a system) is not required. - (f) If fuses are used, there must be spare fuses for use in flight equal to at least 50 percent of the number of fuses of each rating required for complete circuit protection. - (g) Automatic reset circuit breakers may be used as integral protectors for electrical equipment provided there is circuit protection for the cable supplying power to the equipment. [Doc. No. 5084, 29 FR 16150, Dec. 3, 1964, as amended by Amdt. 29–24, 49 FR 44440, Nov. 6, 1984] # § 29.1359 Electrical system fire and smoke protection. - (a) Components of the electrical system must meet the applicable fire and smoke protection provisions of §§ 29.831 and 29.863. - (b) Electrical cables, terminals, and equipment, in designated fire zones, and that are used in emergency procedures, must be at least fire resistant. - (c) Insulation on electrical wire and cable installed in the rotorcraft must be self-extinguishing when tested in accordance with Appendix F, Part I(a)(3), of part 25 of this chapter. [Doc. No. 5084, 29 FR 16150, Dec. 3, 1964, as amended by Amdt. 29–42, 63 FR 43285, Aug. 12, 1998] ### §29.1363 Electrical system tests. - (a) When laboratory tests of the electrical system are conducted— - (1) The tests must be performed on a mock-up using the same generating equipment used in the rotorcraft: - (2) The equipment must simulate the electrical characteristics of the distribution wiring and connected loads to the extent necessary for valid test results; and - (3) Laboratory generator drives must simulate the prime movers on the rotorcraft with respect to their reaction to generator loading, including loading due to faults. - (b) For each flight condition that cannot be simulated adequately in the laboratory or by ground tests on the rotorcraft, flight tests must be made. #### LIGHTS ### §29.1381 Instrument lights. The instrument lights must- - (a) Make each instrument, switch, and other device for which they are provided easily readable; and - (b) Be installed so that— - (1) Their direct rays are shielded from the pilot's eyes; and - (2) No objectionable reflections are visible to the pilot. ## § 29.1383 Landing lights. - (a) Each required landing or hovering light must be approved. - (b) Each landing light must be installed so that— #### Federal Aviation Administration, DOT - (1) No objectionable glare is visible to the pilot: - (2) The pilot is not adversely affected by halation; and - (3) It provides enough light for night operation, including hovering and landing. - (c) At least one separate switch must be provided, as applicable— - (1) For each separately installed landing light; and - (2) For each group of landing lights installed at a common location. ## § 29.1385 Position light system installa- - (a) General. Each part of each position light system must meet the applicable requirements of this section and each system as a whole must meet the requirements of §§ 29.1387 through 29.1397. - (b) Forward position lights. Forward position lights must consist of a red and a green light spaced laterally as far apart as practicable and installed forward on the rotorcraft so that, with the rotorcraft in the normal flying position, the red light is on the left side, and the green light is on the right side. Each light must be approved. - (c) Rear position light. The rear position light must be a white light mounted as far aft as practicable, and must be approved. - (d) Circuit. The two forward position lights and the rear position light must make a single circuit. - (e) Light covers and color filters. Each light cover or color filter must be at least flame resistant and may not change color or shape or lose any appreciable light transmission during normal use. # §29.1387 Position light system dihedral angles. - (a) Except as provided in paragraph (e) of this section, each forward and rear position light must, as installed, show unbroken light within the dihedral angles described in this section. - (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and the other at 110 degrees to the left of the first, as viewed when looking forward along the longitudinal axis. - (c) Dihedral angle R (right) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and the other at 110 degrees to the right of the first, as viewed when looking forward along the longitudinal axis. - (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70 degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal axis, as viewed when looking aft along the longitudinal axis. - (e) If the rear position light, when mounted as far aft as practicable in accordance with §29.1385(c), cannot show unbroken light within dihedral angle A (as defined in paragraph (d) of this section), a solid angle or angles of obstructed visibility totaling not more than 0.04 steradians is allowable within that dihedral angle, if such solid angle is within a cone whose apex is at the rear position light and whose elements make an angle of 30° with a vertical line passing through the rear position light. (49~U.S.C.~1655(c)) [Doc. No. 5084, 29 FR 16150, Dec. 3, 1964, as amended by Amdt. 29-9, 36 FR 21279, Nov. 5, 1971] ## §29.1389 Position light distribution - (a) General. The intensities prescribed in this section must be provided by new equipment with light covers and color filters in place. Intensities must be determined with the light source operating at a steady value equal to the average luminous output of the source at the normal operating voltage of the rotorcraft. The light distribution and intensity of each position light must meet the requirements of paragraph (b) of this section. - (b) Forward and rear position lights. The light distribution and intensities of forward and rear position lights must be expressed in terms of minimum intensities in the horizontal plane, minimum intensities in any vertical plane, and maximum intensities in overlapping beams, within dihedral angles, L, R, and A, and must meet the following requirements: - (1) Intensities in the horizontal plane. Each intensity in the horizontal plane